Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Uma média móvel é usada para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossas séries temporais. 2. Na guia Dados, clique em Análise de dados. Nota: não consigo encontrar o botão Análise de dados Clique aqui para carregar o complemento Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Intervalo de entrada e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e digite 6. 6. Clique na caixa Escala de saída e selecione a célula B3. 8. Traçar um gráfico desses valores. Explicação: porque definimos o intervalo para 6, a média móvel é a média dos 5 pontos de dados anteriores e o ponto de dados atual. Como resultado, picos e vales são alisados. O gráfico mostra uma tendência crescente. O Excel não pode calcular a média móvel para os primeiros 5 pontos de dados porque não há suficientes pontos de dados anteriores. 9. Repita os passos 2 a 8 para o intervalo 2 e o intervalo 4. Conclusão: quanto maior o intervalo, mais os picos e os vales são alisados. Quanto menor o intervalo, mais perto as médias móveis são para os pontos de dados reais. OANDA usa cookies para tornar nossos sites fáceis de usar e personalizados para nossos visitantes. Os cookies não podem ser usados para identificá-lo pessoalmente. Ao visitar o nosso site, você aceita o uso de cookies da OANDA8217 de acordo com nossa Política de Privacidade. Para bloquear, excluir ou gerenciar cookies, visite aboutcookies. org. A restrição de cookies impedirá que você se beneficie de algumas das funcionalidades do nosso site. Baixe o nosso Mobile Apps Select conta: ampltiframe src4489469.fls. doubleclick. netactivityisrc4489469typenewsi0catoanda0u1fxtradeiddclatdcrdidtagforchilddirectedtreatmentord1num1 mcesrc4489469.fls. doubleclick. netactivityisrc4489469typenewsi0catoanda0u1fxtradeiddclatdcrdidtagforchilddirectedtreatmentord1num1 width1 height1 frameborder0 styledisplay: nenhum mcestyledisplay: noneampgtampltiframeampgt Lição 1: médias móveis Tipos de Médias Móveis Existem vários tipos de médias móveis disponíveis para atender Diferentes necessidades de análise de mercado. Os mais utilizados pelos comerciantes incluem o seguinte: Média móvel simples Média móvel média média móvel expressiva (SMA) Uma média móvel simples é o tipo mais básico de média móvel. É calculado tomando uma série de preços (ou períodos de relatório), adicionando esses preços juntos e dividindo o total pelo número de pontos de dados. Esta fórmula determina a média dos preços e é calculada de forma a ajustar (ou mover) em resposta aos dados mais recentes utilizados para calcular a média. Por exemplo, se você incluir apenas as 15 taxas de câmbio mais recentes no cálculo médio, a taxa mais antiga é automaticamente descartada cada vez que um novo preço se torna disponível. Com efeito, a média move-se à medida que cada novo preço está incluído no cálculo e garante que a média baseie-se apenas nos últimos 15 preços. Com um pequeno teste e erro, você pode determinar uma média móvel que se encaixa na sua estratégia comercial. Um bom ponto de partida é uma média móvel simples com base nos últimos 20 preços. Média móvel ponderada (WMA) Uma média móvel ponderada é calculada da mesma forma que uma média móvel simples, mas usa valores que são ponderados linearmente para garantir que as taxas mais recentes tenham um impacto maior na média. Isso significa que a taxa mais antiga incluída no cálculo recebe uma ponderação de 1 o próximo valor mais antigo recebe uma ponderação de 2 e o próximo valor mais antigo recebe uma ponderação de 3, até a taxa mais recente. Alguns comerciantes acham esse método mais relevante para a determinação de tendências, especialmente em um mercado em rápido movimento. A desvantagem para usar uma média móvel ponderada é que a linha média resultante pode ser mais rápida do que uma média móvel simples. Isso poderia tornar mais difícil discernir uma tendência de mercado devido a uma flutuação. Por esse motivo, alguns comerciantes preferem colocar uma média móvel simples e uma média móvel ponderada no mesmo gráfico de preços. Gráfico de preços de castiçal com média móvel simples e média móvel média ponderada média móvel (EMA) Uma média móvel exponencial é semelhante a uma média móvel simples, mas, enquanto uma média móvel simples remove os preços mais antigos à medida que novos preços se tornam disponíveis, uma média móvel exponencial calcula A média de todos os intervalos históricos, começando no ponto que você especifica. Por exemplo, quando você adiciona uma nova sobreposição média exponencial a um gráfico de preços, você atribui o número de períodos de relatório a incluir no cálculo. Vamos assumir que você especificou para os últimos 10 preços a serem incluídos. Este primeiro cálculo será exatamente o mesmo que uma média móvel simples também com base em 10 períodos de relatório, mas quando o próximo preço estiver disponível, o novo cálculo reterá os 10 preços originais, mais o novo preço, para chegar à média. Isso significa que existem agora 11 períodos de relatório no cálculo exponencial da média móvel, enquanto a média móvel simples sempre será baseada em apenas as 10 taxas mais recentes. Decidir sobre qual média móvel para usar Para determinar qual média móvel é melhor para você, você deve primeiro entender suas necessidades. Se o seu principal objetivo é reduzir o ruído de preços consistentemente flutuantes, a fim de determinar uma direção global do mercado, então uma média móvel simples das 20 últimas taxas pode fornecer o nível de detalhes que você precisa. Se você quiser que sua média móvel faça mais ênfase nas taxas mais recentes, uma média ponderada é mais apropriada. Tenha em mente no entanto, porque as médias móveis ponderadas são afetadas mais pelos preços mais recentes, a forma da linha média pode ser distorcida potencialmente resultando na geração de falsos sinais. Ao trabalhar com médias móveis ponderadas, você deve estar preparado para um maior grau de volatilidade. Média Variável Simples Média Variável Ponderada 169 1996 - 2017 OANDA Corporation. Todos os direitos reservados. A família de marcas OANDA, fxTrade e OANDAs fx são de propriedade da OANDA Corporation. Todas as outras marcas registradas que aparecem neste site são propriedade de seus respectivos proprietários. A negociação com alavancagem em contratos de moeda estrangeira ou outros produtos off-exchange na margem traz um alto nível de risco e pode não ser adequado para todos. Recomendamos que você considere cuidadosamente se o comércio é apropriado para você à luz de suas circunstâncias pessoais. Você pode perder mais do que você investir. As informações sobre este site são de natureza geral. Recomendamos que você procure conselhos financeiros independentes e assegure-se de compreender plenamente os riscos envolvidos antes da negociação. Negociar através de uma plataforma online traz riscos adicionais. Consulte aqui nossa seção legal. As apostas de propagação financeira estão disponíveis apenas para os clientes da OANDA Europe Ltd que residem no Reino Unido ou na República da Irlanda. CFDs, capacidades de cobertura MT4 e rácios de alavancagem superiores a 50: 1 não estão disponíveis para residentes dos EUA. A informação neste site não é dirigida a residentes em países onde sua distribuição ou uso por qualquer pessoa seria contrária à legislação ou regulamentação local. A OANDA Corporation é uma negociante de câmbio mercantil e varejista registrada da Comissão de Futuros com a Commodity Futures Trading Commission e é membro da National Futures Association. Não: 0325821. Por favor, consulte a NFA FOREX INVESTOR ALERT, onde apropriado. OANDA (Canadá) Corporation As contas ULC estão disponíveis para qualquer pessoa com uma conta bancária canadense. OANDA (Canadá) Corporation A ULC é regulada pela Organização Reguladora do Indústria do Investimento do Canadá (OCRCVM), que inclui o banco de dados do conselheiro on-line da IIROCs (Relatório do conselheiro da IIROC) e as contas dos clientes são protegidas pelo Fundo Canadense de Proteção ao Investidor dentro dos limites especificados. Uma brochura que descreve a natureza e os limites da cobertura está disponível mediante solicitação ou em cipf. ca. A OANDA Europe Limited é uma empresa registrada na Inglaterra número 7110087, e tem sua sede no Floor 9a, Tower 42, 25 Old Broad St, Londres EC2N 1HQ. É autorizado e regulado pela Autoridade de Conduta Financeira160. Não: 542574. OANDA Asia Pacific Pte Ltd (Co. Reg. No 200704926K) possui uma Licença de Serviços de Mercados de Capitais emitida pela Autoridade Monetária de Singapura e também é licenciada pela International Enterprise Singapore. A OANDA Australia Pty Ltd 160 é regulada pela Comissão de Valores Mobiliários e Investimentos da ASIC (ABN 26 152 088 349, AFSL nº 412981) e é o emissor dos produtos e / ou serviços neste site. É importante para você considerar o atual Guia de Serviços Financeiros (FSG). Declaração de divulgação do produto (PDS). Termos de conta e outros documentos OANDA relevantes antes de tomar decisões de investimento financeiro. Estes documentos podem ser encontrados aqui. OANDA Japan Co. Ltd. Primeiro Diretor de Negócios Financeiros de Tipo I do Kanto Local Financial Bureau (Kin-sho) Nº 2137 do Instituto de Futuros Financeiros número 1571. Negociação FX e CFDs na margem é de alto risco e não é adequado para todos. As perdas podem exceder o investimento. Médias móveis Médias móveis Com conjuntos de dados convencionais, o valor médio é geralmente o primeiro, e uma das estatísticas de resumo mais úteis para calcular. Quando os dados estão na forma de uma série temporal, a série significa uma medida útil, mas não reflete a natureza dinâmica dos dados. Os valores médios calculados em períodos curtos, quer antes do período atual, quer centrados no período atual, são geralmente mais úteis. Uma vez que esses valores médios variam, ou se movem, à medida que o período atual se move do tempo t 2, t 3. etc., eles são conhecidos como médias móveis (Mas). Uma média móvel simples é (tipicamente) a média não ponderada de k valores anteriores. Uma média móvel ponderada exponencialmente é essencialmente a mesma que uma média móvel simples, mas com contribuições para a média ponderada pela proximidade com a hora atual. Como não há um, mas toda uma série de médias móveis para qualquer série, o conjunto de Mas pode ser plotado em gráficos, analisados como uma série e usados em modelagem e previsão. Uma série de modelos pode ser construída usando médias móveis, e estas são conhecidas como modelos MA. Se esses modelos forem combinados com modelos autorregressivos (AR), os modelos compostos resultantes são conhecidos como modelos ARMA ou ARIMA (o I é para integrado). Médias móveis simples Uma vez que uma série temporal pode ser considerada como um conjunto de valores, t 1,2,3,4, n a média desses valores pode ser calculada. Se assumirmos que n é bastante grande, e selecionamos um inteiro k, que é muito menor que n. Podemos calcular um conjunto de médias de bloco, ou médias móveis simples (da ordem k): cada medida representa a média dos valores de dados ao longo de um intervalo de observações k. Observe que o primeiro MA possível da ordem k gt0 é aquele para t k. Mais geralmente podemos soltar o subíndice extra nas expressões acima e escrever: Isto indica que a média estimada no tempo t é a média simples do valor observado no tempo t e as etapas de tempo precedentes de k-1. Se forem aplicados pesos que diminuam a contribuição das observações que estão mais longe no tempo, a média móvel é dita suavizada exponencialmente. As médias móveis são freqüentemente usadas como forma de previsão, pelo que o valor estimado para uma série no instante t 1, S t1. É tomado como MA durante o período até e inclusive o tempo t. por exemplo. A estimativa de hoje é baseada em uma média de valores registrados anteriores até e inclusive ontem (para dados diários). As médias móveis simples podem ser vistas como uma forma de suavização. No exemplo ilustrado abaixo, o conjunto de dados de poluição do ar mostrado na introdução deste tópico foi aumentado por uma linha de média móvel de 7 dias (MA), mostrada aqui em vermelho. Como pode ser visto, a linha MA suaviza os picos e as depressões nos dados e pode ser muito útil na identificação de tendências. A fórmula padrão de cálculo direto significa que os primeiros pontos de dados k -1 não possuem valor MA, mas, posteriormente, os cálculos se estendem ao ponto final de dados da série. PM10 valores médios diários, fonte de Greenwich: London Air Quality Network, londonair. org. uk Um dos motivos para o cálculo de médias móveis simples da maneira descrita é que permite que os valores sejam computados para todos os intervalos de tempo do tempo até o presente, e Como uma nova medida é obtida para o tempo t 1, o MA para o tempo t 1 pode ser adicionado ao conjunto já calculado. Isso fornece um procedimento simples para conjuntos de dados dinâmicos. No entanto, existem algumas questões com essa abordagem. É razoável argumentar que o valor médio nos últimos 3 períodos, por exemplo, deve estar localizado no tempo t -1, e não no tempo t. E para um MA em um número par de períodos, talvez ele deve estar localizado no meio do ponto entre dois intervalos de tempo. Uma solução para esta questão é usar cálculos de MA centrados, em que o MA no tempo t é a média de um conjunto simétrico de valores em torno de t. Apesar de seus méritos óbvios, essa abordagem não é geralmente usada porque requer que os dados estejam disponíveis para eventos futuros, o que pode não ser o caso. Nos casos em que a análise é inteiramente de uma série existente, o uso de Mas centrado pode ser preferível. As médias móveis simples podem ser consideradas como uma forma de suavização, eliminando alguns componentes de alta freqüência de uma série de tempo e destacando (mas não removendo) tendências de maneira similar à noção geral de filtragem digital. De fato, as médias móveis são uma forma de filtro linear. É possível aplicar uma computação média móvel a uma série que já foi suavizada, ou seja, suavizando ou filtrando uma série já suavizada. Por exemplo, com uma média móvel da ordem 2, podemos considerá-la como sendo calculada usando pesos, de modo que o MA em x 2 0,5 x 1 0,5 x 2. Do mesmo modo, o MA em x 3 0,5 x 2 0,5 x 3. Se nós Aplicar um segundo nível de suavização ou filtragem, temos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3, isto é, a filtragem de 2 estágios O processo (ou convolução) produziu uma média móvel simétrica ponderada de forma variável, com pesos. Várias convoluções podem produzir médias móveis bastante ponderadas, algumas das quais foram encontradas de particular uso em campos especializados, como nos cálculos do seguro de vida. As médias móveis podem ser usadas para remover efeitos periódicos se computado com o comprimento da periodicidade como conhecido. Por exemplo, com os dados mensais, as variações sazonais podem ser muitas vezes removidas (se este for o objetivo) aplicando uma média móvel simétrica de 12 meses com todos os meses ponderados igualmente, exceto o primeiro e o último que são ponderados por 12. Isso ocorre porque haverá Tenha 13 meses no modelo simétrico (tempo atual, t. - 6 meses). O total é dividido por 12. Procedimentos semelhantes podem ser adotados para qualquer periodicidade bem definida. Médias móveis ponderadas exponencialmente (EWMA) Com a fórmula média móvel simples: todas as observações são igualmente ponderadas. Se chamássemos esses pesos iguais, alfa t. Cada um dos pesos k seria igual a 1 k. Então a soma dos pesos seria de 1, e a fórmula seria: já vimos que as múltiplas aplicações desse processo resultam na variação dos pesos. Com médias móveis exponencialmente ponderadas, a contribuição para o valor médio de observações mais removidas no tempo é deliberada reduzida, enfatizando eventos mais recentes (locais). Essencialmente, um parâmetro de suavização, 0lt alfa lt1, é introduzido e a fórmula revisada para: Uma versão simétrica desta fórmula seria da forma: se os pesos no modelo simétrico forem selecionados como os termos dos termos da expansão binomial, (1212) 2q. Eles somarão para 1, e como q se tornar grande, irá se aproximar da distribuição Normal. Esta é uma forma de ponderação do kernel, com o Binomial atuando como a função kernel. A convolução de dois estágios descrita na subseção anterior é precisamente esse arranjo, com q 1, produzindo os pesos. Em suavização exponencial, é necessário usar um conjunto de pesos que somem para 1 e que reduzem de tamanho geométricamente. Os pesos utilizados são tipicamente da forma: Para mostrar que esses pesos somam para 1, considere a expansão de 1 como uma série. Podemos escrever e expandir a expressão entre parênteses usando a fórmula binomial (1- x) p. Onde x (1-) e p -1, o que dá: Isto fornece uma forma de média móvel ponderada da forma: esta soma pode ser escrita como uma relação de recorrência: o que simplifica bastante a computação e evita o problema de que o regime de ponderação Deve ser estritamente infinito para os pesos somarem para 1 (para valores pequenos de alfa. Isso geralmente não é o caso). A notação utilizada por diferentes autores varia. Alguns usam a letra S para indicar que a fórmula é essencialmente uma variável suavizada e escreve: enquanto a literatura da teoria do controle geralmente usa Z em vez de S para os valores exponencialmente ponderados ou suavizados (veja, por exemplo, Lucas e Saccucci, 1990, LUC1 , E o site NIST para mais detalhes e exemplos trabalhados). As fórmulas citadas acima derivam do trabalho de Roberts (1959, ROB1), mas Hunter (1986, HUN1) usa uma expressão da forma: que pode ser mais apropriada para uso em alguns procedimentos de controle. Com o alfa 1, a estimativa média é simplesmente seu valor medido (ou o valor do item de dados anterior). Com 0,5, a estimativa é a média móvel simples das medições atuais e anteriores. Em modelos de previsão o valor, S t. É freqüentemente usado como estimativa ou valor de previsão para o próximo período de tempo, ou seja, como a estimativa para x no tempo t 1. Assim, temos: Isso mostra que o valor de previsão no tempo t 1 é uma combinação da média móvel ponderada exponencialmente anterior Mais um componente que representa o erro de previsão ponderado, epsilon. No tempo t. Assumindo que uma série de tempo é fornecida e uma previsão é necessária, é necessário um valor para alfa. Isso pode ser estimado a partir dos dados existentes, avaliando a soma dos erros de predição quadrados, obtendo com valores variáveis de alfa para cada t 2,3. Definindo a primeira estimativa para ser o primeiro valor de dados observado, x 1. Nas aplicações de controle, o valor de alfa é importante, isto é, é usado na determinação dos limites de controle superior e inferior e afeta o comprimento de execução médio (ARL) esperado Antes que esses limites de controle sejam quebrados (sob o pressuposto de que a série temporal representa um conjunto de variáveis independentes aleatoriamente, distribuídas de forma idêntica com variância comum). Nessas circunstâncias, a variância da estatística de controle: é (Lucas e Saccucci, 1990): os limites de controle geralmente são estabelecidos como múltiplos fixos dessa variância assintótica, p. - 3 vezes o desvio padrão. Se alfa 0.25, por exemplo, e os dados que estão sendo monitorados assumem ter uma distribuição Normal, N (0,1), quando no controle, os limites de controle serão - 1.134 e o processo atingirá um ou outro limite em 500 etapas na média. Lucas e Saccucci (1990 LUC1) derivam os ARLs para uma ampla gama de valores alfa e sob vários pressupostos usando os procedimentos da Cadeia de Markov. Eles tabulam os resultados, incluindo o fornecimento de ARL quando a média do processo de controle foi deslocada por algum múltiplo do desvio padrão. Por exemplo, com uma mudança de 0,5 com alfa 0.25, o ARL tem menos de 50 etapas de tempo. As abordagens descritas acima são conhecidas como suavização exponencial única. Uma vez que os procedimentos são aplicados uma vez às séries temporais e, em seguida, os processos de análise ou controle são realizados no conjunto de dados suavizado resultante. Se o conjunto de dados incluir uma tendência e / ou componentes sazonais, o alisamento exponencial de dois ou três estágios pode ser aplicado como meio de remoção (modelagem explícita) desses efeitos (veja ainda mais a seção sobre Previsão abaixo e o exemplo NIST). CHA1 Chatfield C (1975) The Analysis of Times Series: Teoria e Prática. Chapman and Hall, London HUN1 Hunter J S (1986) A média móvel ponderada exponencialmente. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de Controle Médio Médio Ponderado Exponencialmente: Propriedades e Melhorias. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Testes de tabela de controle com base em médias móveis geométricas. Technometrics, 1, 239-250
Stop Loss Policy A Take Profit é usado para definir uma saída quando a taxa de câmbio se move em uma direção favorável. Se você acredita que o preço de um par de moedas aumentará ou cairá para um nível específico, mas não saberá o que ele fará depois disso, colocar uma Ordem de lucro deve fechar seu comércio quando a moeda chegar a essa posição. Se você comprar o EUR em 1.3300 e você espera que o preço aumente, você pode definir uma ordem de lucro para vender em 1.3350. Quando o mercado atinge 1.3350, sua Ordem de lucro é executada e a posição está fechada. Uma ordem Stop Loss permite que os comerciantes estabeleçam um ponto de saída para uma troca perdedora quando definam seus riscos e compensem seu comércio de acordo. Isso agrega um nível de proteção para os comerciantes, garantindo que eles não perderão mais do que eles podem lidar se uma posição no mercado cair. Se você comprar o EUR em 1.3300 e espera que o preço caia, você pode definir uma ordem Stop Loss para vender em 1.3250. Q...
Comments
Post a Comment